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ABSTRACT

A Cu(I)-catalyzed asymmetric diamination for a variety of conjugated dienes and a triene with encouraging ee’s has been effectively achieved
using (R)-DTBM-SEGPHOS as a chiral ligand and di-tert-butyldiaziridinone as the nitrogen source.

Direct diamination of olefins provides an efficient approach
to the synthesis of vicinal diamines, which are biologically
and chemically important functional moieties.1 While various
metal-mediated and catalyzed diaminations have been
achieved,2-8 catalytic asymmetric diamination of olefins has
been less well developed and still remains a challenge in
organic synthesis. Earlier, Muñiz and co-workers reported

chiral auxiliary based9a and chiral Lewis acid catalyzed9b

asymmetric diamination using bisimidoosmium as reagent.
Recently, we reported Pd(0)-catalyzed asymmetric diami-
nation of conjugated dienes10a,b and asymmetric allylic and
homoallylic C-H diamination of terminal olefins.10c Previ-
ously, we have shown that Cu(I)-catalyzed diamination of
conjugated dienes and triene using di-tert-butyldiaziridinone
(2)11,12 as the nitrogen source occurs regioselectively at the
terminal double bond under mild reaction conditions (Scheme
1),8a which provides complementary regioselectivity to

the Pd(0)-catalyzed diamination.7 It is highly desirable to
develop an asymmetric version of this diamination process
to enhance its synthetic utility. However, the Cu(I)-catalyzed
diamination likely proceeds via a radical mechanism (Figure
1).8,13-15 The involvement of radical intermediates presents
a challenge for asymmetric control.

Asymmetric diamination was initially investigated using
10 mol % of CuCl with various commercially available or
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2004, 2243. Pd: (f) Bäckvall, J.-E. Tetrahedron Lett. 1978, 163. Tl: (g)
Aranda, V. G.; Barluenga, J.; Aznar, F. Synthesis 1974, 504.

(3) For recent Cu(II)-mediated intramolecular diamination, see: (a)
Zabawa, T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005, 127,
11250. (b) Zabawa, T. P.; Chemler, S. R. Org. Lett. 2007, 9, 2035.

(4) For Rh(II)- and Fe(III)-catalyzed diamination with TsNCl2, see: (a)
Li, G.; Wei, H.-X.; Kim, S. H.; Carducci, M. D. Angew. Chem., Int. Ed.
2001, 40, 4277. (b) Wei, H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67,
4777.

(5) For a recent Pd(II)-catalyzed intermolecular diamination of conju-
gated dienes, see: Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I.
J. Am. Chem. Soc. 2005, 127, 7308.

(6) For recent Pd(II)- and Ni-catalyzed intramolecular diamination of
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easily prepared chiral monophosphorus and nitrogen-contain-
ing ligands16 and trans-1-phenylbutadiene (7a) as a test

substrate at room temperature for 6 h (Scheme 2). As shown
in Figure 2, all the reactions went smoothly to give
diamination product 3a with high conversions, but with 0 to
12% ee. To search for more promising ligands, a series of

commercially available chiral bisphosphine ligands17 were
subsequently studied for the diamination of trans-1-phe-
nylbutadiene (7a) with a 2/1 ratio of CuCl and ligand. It
was found that steric bulkiness on the phosphine atoms had
a large impact on the enantioselectivities (Figure 3). En-

couragingly, the diamination of 7a with (R)-DTBM-SEG-
PHOS (L12)17f gave 90% conversion and 56% ee (Figure
3).

To improve the enantioselectivity, the reaction conditions,
including solvent, temperature, and the ratio of ligand and
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Figure 1. Proposed catalytic cycle for Cu(I)-catalyzed diamination.

Scheme 2

Figure 2. Asymmetric diamination of diene 7a with selected
monophosphorus and nitrogen-containing ligands.18

Figure 3. Asymmetric diamination of diene 7a with selected
bisphosphine ligands.19
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CuCl, were further investigated. It was found that solvent
has a significant effect on both reactivity and enantioselec-
tivity (Table 1, entries 1-7), and benzene-d6 proved to be

the best solvent. The ratio of ligand and CuCl was also very
important, and only 24% conversion was obtained with
slightly higher ee when 1:1 CuCl and L12 were used (Table
1, entry 8). Lowering the temperature improved the enan-
tioselectivity (Table 1, entries 9-13), increasing to 65% ee
at 0 °C (a small amount of toluene was added to avoid
solidification of benzene-d6). Overall, the best reaction
conditions involve 10 mol % of CuCl and 5.5 mol % of L12
in benzene-d6 with a small amount of toluene at 0 °C (Table
1, entry 10).

Under the optimized conditions, a variety of conjugated
dienes can be regio- and enantioseletively diaminated at the
terminal double bond in 59-93% yield with 62-74% ee’s
(Table 2, entries 1-10). The ee could be further improved
after recrystallization (Table 2, entry 2). For cis-1-phenylb-
utadiene, isomerization of the cis double bond occurred
during the reaction and mainly gave E-isomer product in 70%
ee which was a little higher than direct diamination of trans-
1-phenylbutadiene (Table 2, entry 1 vs 5). When a mixture
of trans- and cis-dienes was subjected to the reaction
conditions, the diamination product of the E isomer was
formed predominately with only a trace amount of Z isomer
(Table 2, entries 6 and 7). Asymmetric diamination of 1,1-
disubstituted butadienes gave slightly higher ee’s (Table 2,
entries 8-10). When a triene was diaminated at room
temperature in benzene-d6, the diamination product was
obtained in 58% ee (Table 2, entry 11). Asymmetric
diamination of trans-1-phenyl-3-methylbutadiene led to 90%
yield with only 23% ee (Table 2, entry 12), suggesting that
the steric effect and radical stability are important factors
for the enantioselectivity.

In summary, catalytic asymmetric diamination for a variety
of conjugated dienes and a triene with encouraging ee’s has
been achieved using CuCl/L12 as the catalyst and di-tert-
butyldiaziridinone as the nitrogen source. These results show
that Cu(I)-catalyzed asymmetric diamination is feasible
despite the fact that the diamination likely involves radical
intermediates. Ligand (R)-DTBM-SEGPHOS (L12) provides
a very promising lead for further improvement. Searches for

Table 1. Studies on Reaction Conditions for Asymmetric
Diamination of 7aa

entry
CuCl

(mol %)
L12

(mol %) solvent
conv.
(%)b ee (%)c

1 10 5 DME 63 44
2 10 5 Et2O 43 42
3 10 5 CDCl3 78 19
4 10 5 CD2Cl2 100 35
5 10 5 THF 21 33
6 10 5 toluene-d8 77 53
7 10 5 C6D6 90 56
8 10 10 C6D6 24 58
9 10 5 C6D6/PhCH3 (11/1, v/v) 73 63
10 10 5.5 C6D6/PhCH3(11/1, v/v) 72 65
11 12 5 C6D6/PhCH3 (11/1, v/v) 74 61
12 15 5 C6D6/PhCH3 (11/1, v/v) 89 56
13 10 5.5 PhCH3 30 65

a All the reactions were carried out with trans-1-phenylbutadiene (7a)
(0.20 mmol), di-tert-butyldiaziridinone (2) (0.30 mmol), and solvent (0.60
mL). For entries 1-8, the reactions were carried out at rt for 6 h. For entries
9-13, the reactions were carried out at 0 °C for 20 h. b The conversion
was determined by crude 1H NMR. c The ee was determined by chiral HPLC
(Chiralpak AD-H column).

Table 2. Catalytic Asymmetric Diamination of Dienes and
Trienea

a All the reactions were carried out with olefin (0.20 mmol), di-tert-
butyldiaziridinone (2) (0.30 mmol), CuCl (0.02 mmol), L12 (0.011 mmol),
benzene-d6 (0.55 mL), and toluene (0.050 mL) at 0 °C under argon for
20 h unless otherwise stated. b Isolated yield based on diene or triene. c The
ratio was determined by 1H NMR. d Only a trace amount of isomer was
observed by 1H NMR. e The reaction was carried out in benzene-d6 at rt
for 20 h. f The ee was determined by chiral HPLC (Chiralpak AD-H
column). g The ee after recrystallization from hexanes. h Not determined.
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more effective chiral ligands, studies of different nitrogen
sources, and expansion of the substrate scope will be carried
out.
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